Кавитационный теплогенератор: устройство, виды, применение. Все подробности про изготовление вихревых теплогенераторов своими руками Видео. Вихревой теплогенератор своими руками

Теплогенератор Потапова не известен широким народным массам и еще мало изучен с научной точки зрения. Впервые попробовать осуществить пришедшую в голову идею Юрий Семенович Потапов осмелился уже ближе к концу восьмидесятых годов прошлого столетия. Исследования проводились в городе Кишиневе. Исследователь не ошибся, и результаты попыток превзошли все его ожидания.

Готовый теплогенератор удалось запатентовать и пустить в общее пользование лишь в начале февраля 2000 года.

Все имеющиеся мнения в отношении созданного Потаповым теплогенератора достаточно сильно расходятся. Кто-то считает его практически мировым изобретением, приписывают ему очень высокую экономичность при эксплуатации - до 150%, а в отдельных случаях и до 200% экономии энергии. Считают, что практически создан неиссякаемый источник энергии на Земле без вредных последствий для окружающей среды. Другие же утверждают обратное - мол, все это шарлатанство, и теплогенератор, на самом деле, требует ресурсов даже больше, чем при использовании его типовых аналогов.

По некоторым источникам, разработки Потапова запрещены в России, Украине и на территории Молдовы. По другим источникам, все-таки, на настоящий момент в нашей стране термогенераторы подобного типа выпускают несколько десятков заводов и продаются они по всему миру, давно пользуются спросом и занимают призовые места на различных технических выставках.

Описательная характеристика строения теплогенератора

Представить, как выглядит теплогенератор Потапова можно, тщательно изучив схему его строения. Тем более, что состоит он из достаточно типовых деталей, и о чем идет речь, понять будет не сложно.

Итак, центральной и самой основательной частью теплогенератора Потапова является его корпус. Он занимает центральное положение во всей конструкции и имеет цилиндрическую форму, установлен он вертикально. К нижней части корпуса, его фундаменту, торцом присоединен циклон для зарождения в нем вихревых потоков и увеличения скорости продвижения жидкости. Поскольку установка в основе своего действия имеет большие скоростные явления, то в ее конструкции необходимо было предусмотреть элементы, тормозящие весь процесс для более удобного управления.

Для таких целей в противоположной стороне от циклона к корпусу присоединяется специальное тормозное устройство. Оно тоже цилиндрической формы, в центре его установлена ось. На оси по радиусам прикреплены несколько ребер, количеством от двух. Следом за тормозным устройством предусмотрено дно, снабженное выходным отверстием для жидкости. Далее по ходу отверстие преобразуется в патрубок.

Это основные элементы теплогенератора, все они расположены в вертикальной плоскости и плотно соединены. Дополнительно патрубок для выхода жидкости оснащен перепускным патрубком. Они плотно скреплены и обеспечивают контакт двух концов цепочки основных элементов: то есть патрубок верхней части соединен с циклоном в нижней части. В месте сцепления перепускного патрубка с циклоном предусмотрено добавочное малое тормозное устройство. К торцевой части циклона под прямым углом к оси основной цепочки элементов прибора присоединен инжекционный патрубок.

Инжекционный патрубок предусмотрен конструкцией устройства с целью соединения насоса с циклоном, приводящими и отводящими трубопроводами для жидкости.

Прототип теплогенератора Потапова

Вдохновителем Юрия Семеновича Потапова на создание теплогенератора стала вихревая труба Ранка. Труба Ранка была изобретена с целью разделения горячей и холодной масс воздуха. Позже в трубу Ранка стали запускать и воду с целью получения аналогичного результата. Вихревые потоки брали свое начало в так называемой улитке - конструктивной части прибора. В процессе применения трубы Ранка было замечено, что вода после прохождения улиткообразного расширения прибора изменяла свою температуру в положительную сторону.

На это необычное, до конца не обоснованное с научной точки зрения явление и обратил внимание Потапов, применив его для изобретения теплогенератора с одним лишь небольшим отличием в результате. После прохождения воды через вихрь ее потоки не резко делились на горячий и холодный, как это происходило с воздухом в трубе Ранка, а на теплый и горячий. В результате некоторых измерительных исследований новой разработки Юрий Семенович Потапов выяснил, что самая энергозатратная часть всего прибора - электрический насос - затрачивает намного меньше энергии, чем ее вырабатывается в результате работы. В этом и заключается принцип экономичности, на котором основан теплогенератор.

Физические явления, на основе которых действует теплогенератор

В общем-то, в способе действия теплогенератора Потапова ничего сложного или необычного нет.

Принцип действия этого изобретения основан на процессе кавитации, отсюда его еще называют вихревым теплогенератором. Кавитация основана на образовании пузырьков воздуха в толще воды, вызванном силой вихревой энергии потока воды. Образование пузырьков всегда сопровождается специфическим звуком и образованием некой энергии в результате их ударов на большой скорости. Пузырьки представляют собой полости в воде, заполненные испарениями от воды, в которой они сами и образовались. Жидкость оказывает постоянное давление на пузырек, соответственно, он стремится перемещаться из области высокого давления в область низкого, дабы уцелеть. В итоге, он не выдерживает давления и резко сжимается или «лопается», при этом выплескивая энергию, образующую волну.

Выделяемая «взрывная» энергия большого количества пузырьков обладает такой силой, что способна разрушить внушительные металлические конструкции. Именно такая энергия и служит добавочной при нагреве. Для теплогенератора предусмотрен полностью закрытый контур, в котором образуются пузырьки очень малого размера, лопающиеся в толще воды. Они не обладают такой разрушительной силой, но обеспечивают прирост тепловой энергии до 80%. В контуре обеспечивается поддержание переменного тока напряжением до 220В, целостность важных для процесса электронов при этом сохраняется.

Как уже было сказано, для работы тепловой установки необходимо образование «водяного вихря». За это отвечает встроенный в тепловую установку насос, который образовывает необходимый уровень давления и с силой направляет его в рабочую емкость. Во время возникновения завихрения в воде происходят определенные перемены с механической энергией в толще жидкости. В результате начинает устанавливаться одинаковый температурный режим. Дополнительная энергия создается, по Эйнштейну, переходом некой массы в необходимое тепло, весь процесс сопровождается холодным ядерным синтезом.

Принцип действия теплогенератора Потапова

Для полного понимания всех тонкостей в характере работы такого устройства, как теплогенератор, следует рассмотреть поэтапно все стадии процесса нагрева жидкости.

В системе теплогенератора насос создает давление на уровне от 4 до 6 атм. Под созданным давлением вода с напором поступает в инжекционный патрубок, присоединенный к фланцу запущенного центробежного насоса. Поток жидкости стремительно врывается в полость улитки, подобной улитке в трубе Ранка. Жидкость, как и в проделанном с воздухом опыте, начинает быстро вращаться по изогнутому каналу для достижения эффекта кавитации.

Следующий элемент, который содержит теплогенератор и куда попадает жидкость - это вихревая труба, в этот момент вода уже достигла одноименного характера и движется стремительно. В соответствии с разработками Потапова, длина вихревой трубы в разы превышает размеры ее ширины. Противоположный край вихревой трубы является уже горячим, туда-то и направляется жидкость.

Чтобы достичь необходимой точки, она проходит свой путь по винтообразно закрученной спирали. Винтовая спираль располагается около стенок вихревой трубы. Через мгновение жидкость достигает своего пункта назначения - горячей точки вихревой трубы. Этим действием завершается движение жидкости по основному корпусу устройства. Следом конструктивно предусмотрено основное тормозное устройство. Это устройство предназначено для частичного вывода горячей жидкости из обретенного ею состояния, то есть поток несколько выравнивается благодаря радиальным пластинам, закрепленным на втулке. Втулка имеет внутреннюю пустую полость, которая соединяется с малым тормозным устройством, следующим за циклоном в схеме строения теплогенератора.

Вдоль стенок тормозного устройства горячая жидкость все ближе продвигается к выходу из устройства. Тем временем, по внутренней полости втулки основного тормозного устройства навстречу потоку горячей жидкости протекает вихревой поток отведенной холодной жидкости.

Времени контакта двух потоков через стенки втулки достаточно, чтобы нагреть холодную жидкость. И теперь уже теплый поток направляется к выходу через малое тормозное устройство. Дополнительный нагрев теплого потока осуществляется во время прохождения его по тормозному устройству под действием явления кавитации. Хорошо прогретая жидкость готова выйти из малого тормозного устройства по байпасу и пройти по основному отводящему патрубку, соединяющему два конца основной цепи элементов теплового устройства.

Горячий теплоноситель также направляется на выход, но в противоположном направлении. Вспомним, что к верхней части тормозного устройства прикрепляется дно, в центральной части дна предусмотрено отверстие с диаметром, равным диаметру вихревой трубы.

Вихревая труба, в свою очередь, соединена отверстием в дне. Следовательно, горячая жидкость заканчивает свое движение по вихревой трубе проходом в отверстие дна. После горячая жидкость попадает в основной отводящий патрубок, где смешивается с теплым потоком. На этом движение жидкостей по системе теплогенератора Потапова закончено. На выход из нагревателя вода поступает с верхней части отводного патрубка - горячая, а из нижней его части - теплая, в нем же она смешивается, готовая к использованию. Горячая вода может применяться либо в водопроводе для хозяйственных нужд, либо в качестве теплоносителя в системе отопления. Все этапы работы теплогенератора проходят в присутствии эфира.

Особенности применения теплогенератора Потапова для отопления помещений

Как известно, нагретую воду в термогенераторе Потапова можно использовать в различных бытовых целях. Достаточно выгодным и удобным может быть применение теплогенератора в качестве конструктивной единицы отопительной системы. Если исходить из указанных экономических параметров установки, то ни одно другое устройство не сравнится по экономии.

Итак, при использовании теплогенератора Потапова для нагрева теплоносителя и пуска его в систему предусмотрен следующий порядок: отработанная уже жидкость с более низкой температурой от первичного контура снова поступает в центробежный насос. В свою очередь, центробежный насос отправляет теплую воду через патрубок непосредственно в систему отопления.

Преимущества теплогенераторов при использовании для отопления

Наиболее явное преимущество теплогенераторов - достаточно простое обслуживание, несмотря на возможность свободной установки без спроса специального разрешения на то у сотрудников электросетей. Достаточно раз в полгода проверить трущиеся детали устройства - подшипники и сальники. При этом, по заявлениям поставщиков, средний гарантированный срок службы - до 15 лет и более.

Теплогенератор Потапова отличается полной безопасностью и безвредностью для окружающей среды и использующих его людей. Экологичность обоснована тем, что при работе кавитационного теплогенератора исключаются выбросы в атмосферу вреднейших продуктов от переработки природного газа, твердотопливных материалов и дизельного топлива. Они просто не используются.

Подпитка работы происходит от электросети. Исключается возможность возникновения возгорания по причине отсутствия контакта с открытым огнем. Дополнительную безопасность обеспечивает приборная панель устройства, с ней производится тотальный контроль за всеми процессами изменения температуры и давления в системе.

Экономическая эффективность при отоплении помещения теплогенераторами выражается в нескольких преимуществах. Во-первых, не нужно заботиться о качестве воды, когда она играет роль теплоносителя. Думать о том, что она причинит вред всей системе только по причине ее низкого качества, не придется. Во-вторых, финансовых вложений в обустройство, прокладку и обслуживание тепловых трасс делать не нужно. В третьих, нагрев воды с использованием физических законов и применения кавитации и вихревых потоков полностью исключает появления кальциевых камней на внутренних стенках установки. В четвертых, исключаются траты денежных средств на транспортировку, хранение и приобретение ранее необходимых топливных материалов (природного угля, твердотопливных материалов, нефтяных продуктов).

Неоспоримое преимущество теплогенераторов для домашнего пользования заключается в их исключительной универсальности. Спектр применения теплогенераторов в бытовом обиходе очень широк:

  • в результате прохождения через систему вода преобразуется, структурируется, а болезнетворные микробы в таких условиях погибают;
  • водой из теплогенератора можно поливать растения, что будет способствовать их бурному росту;
  • теплогенератор способен нагреть воду до температуры, превышающей точку кипения;
  • теплогенератор может работать в совокупности с уже используемыми системами или быть встроенным в новую отопительную систему;
  • теплогенератор уже давно используется осведомленными о нем людьми в качестве основного элемента отопительной системы в домах;
  • теплогенератор легко и без особых затрат подготавливает горячую воду для использования ее в хозяйственных нуждах;
  • теплогенератор может нагревать жидкости, используемые по различным назначениям.

Совершенно неожиданным преимуществом является то, что теплогенератор можно применять даже для переработки нефти. Ввиду уникальности разработки, вихревая установка способна разжижать тяжелые пробы нефти, провести подготовительные мероприятия перед транспортировкой на нефтеперерабатывающие заводы. Все указанные процессы проводятся с минимальными затратами.

Следует отметить способность теплогенераторов к абсолютно автономной работе. То есть режим интенсивности его работы можно задать самостоятельно. К тому же, все конструкции теплогенератора Потапова очень просты при монтаже. Привлекать работников сервисных организаций не потребуется, все операции по установке можно проделать самостоятельно.

Самостоятельная установка теплогенератора Потапова

Для установки своими руками вихревого теплогенератора Потапова в качестве основного элемента отопительной системы требуется достаточно мало инструментов и материалов. Это при условии, что разводка самой отопительной системы уже готова, то есть регистры подвешены под окнами и соединены между собой трубами. Остается только подключить устройство, подающее горячий теплоноситель. Необходимо подготовить:

  • хомуты - для плотного соединения труб системы и труб теплогенератора, типы соединений будут зависеть от используемых материалов труб;
  • инструменты для холодной или горячей сварки - при использовании труб с обеих сторон;
  • герметик для уплотнения соединений;
  • плоскогубцы для утяжки хомутов.

При установке теплогенератора предусмотрена диагональная разводка труб, то есть по ходу движения горячий теплоноситель будет подаваться в верхний патрубок батареи, проходить через нее, а остывающий теплоноситель будет выходить из противоположного нижнего патрубка.

Непосредственно перед установкой теплогенератора необходимо убедиться в целостности и исправности всех его элементов. Затем выбранным способом нужно подсоединить подающий воду патрубок к подающему в систему. То же самое проделать с отводящими патрубками - соединить соответствующие. Затем следует позаботиться о подключении в систему отопления необходимых контролирующих приборов:

  • предохранительный клапан для поддержания давления системы в норме;
  • циркуляционный насос для принуждения движения жидкости по системе.

После теплогенератор подключается к электропитанию напряжением 220В, и проводится заполнение системы водой при открытых воздушных задвижках.

Вихревой теплогенератор Потапова, или же сокращенно ВТП, был разработан специально для того, чтобы получать тепловую энергию с помощью всего лишь электрического двигателя и насоса. Такое устройство используется преимущественно в качестве экономного источника тепла.

Сегодня мы рассмотрим особенности конструкции этого устройства, а также как изготовить вихревой теплогенератор своими руками.

Принцип работы

Работает генератор следующим образом. Вода (или любой другой используемый теплоноситель) попадает в кавитатор. Электродвигатель затем раскручивает кавитатор, в котором при этом схлопываются пузырьки – это и есть кавитация, отсюда и название элемента. Так вся жидкость, которая в него попадает, начинает греться.

Электроэнергия, требуемая для работы генератора, тратится на три вещи:

  • На образование звуковых колебаний.
  • На то, чтобы преодолеть силу трения в устройстве.
  • На нагревание жидкости.

При этом как утверждают создатели устройства, в частности, сам молдаванин Потапов, для работы используется возобновляемая энергия, хотя не совсем понятно, откуда она появляется. Как бы то ни было, дополнительного излучения не наблюдается, следовательно, можно говорить чуть ли не о стопроцентном КПД, ведь почти все энергия тратится на нагрев теплоносителя. Но это в теории.

Для чего используется?

Приведем небольшой пример. В стране есть масса предприятий, которые по тем или иным причинам не могут позволить себе газовое отопление: или магистрали нет неподалеку, или еще что-то. Тогда что остается? Обогреть электричеством, но тарифы на такого рода отопление могут ужаснуть. Вот тут и выручает чудо-прибор Потапова. При его использовании затраты на электроэнергию останутся теми же, КПД, разумеется, тоже, так как больше сотни ему все равно не быть, а вот КПД в плане финансовом будет составлять от 200% до 300%.

Получается, что эффективность вихревого генератора – 1.2-1.5.

Необходимые инструменты

Что же, пора приступать к самостоятельному изготовлению генератора. Давайте посмотрим, что нам потребуется:

  • Шлифовальная машинка угловая, или турбинка;
  • Железный уголок;
  • Сварка;
  • Болты, гайки;
  • Электрическая дрель;
  • Ключи 12-13;
  • Сверла к дрели;
  • Краска, кисточка и грунтовка.

Технология изготовления. Двигатель

Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.

Читайте так же про установку водяного насоса для отопления —

Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.

  1. Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
  2. Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
  3. Красим станину, ждем, пока высохнет.
  4. Сверлим отверстия для крепежа, закрепляем электродвигатель.

Устанавливаем насос

Далее мы должны выбрать «правильный» водяной насос. Ассортимент этих инструментов сегодня настолько широк, что можно найти себе модель любой силы и габаритов. Нам же нужно обращать внимание лишь на две вещи:

  • Сможет ли двигатель раскрутить этот насос;
  • Является ли он (насос) центробежным.

У вихревого генератора корпус представляет собой цилиндр, закрытый с обеих сторон. По боками должны находиться сквозные отверстия, посредством которых устройство будет подсоединяться к отопительной системе. Но главная особенность конструкции – внутри корпуса: сразу возле входного отверстия размещен жиклер. Отверстие жиклера должно подбираться чисто индивидуально.

Обратите внимание! Желательно при этом, чтобы отверстие жиклера было вдвое меньше, чем 1/4 общего диаметра цилиндра. Если отверстие будет меньшим, то вода не сможет проходить сквозь него в необходимом количестве и насос начнет греться. Более того, внутренние элементы начнут разрушаться кавитацией.

Для изготовления корпуса нам потребуются следующие инструменты:

  1. Железная труба с толстыми стенками диаметром около 10 см;
  2. Муфты для соединения;
  3. Сварка;
  4. Несколько электродов;
  5. Турбинка;
  6. Пара патрубков, в которых проделана резьба;
  7. Электрическая дрель;
  8. Сверла;
  9. Ключ разводной.

Теперь – непосредственно к процессу изготовления.

  1. Для начала отрезаем кусок трубы длиной порядка 50-60 см и делаем на ее поверхности внешнюю проточку примерно на пол толщины, 2-2.5 см. нарезаем резьбу.
  2. Берем еще два куска этой же трубы, длиной по 5 см каждый, и делаем из них пару колец.
  3. Затем берем металлический лист с такой же толщиной, какая и у трубы, вырезаем из нее своеобразные крышки, привариваем их там, где резьба не делалась.
  4. По центру крышек делаем два отверстия – одно из них по окружности патрубка, второе – по окружности жиклера. Внутри крышки рядом с жиклером просверливаем фаску таким образом, чтобы получилась форсунка.
  5. Подключаем генератор к отопительной системе. патрубок возле форсунки подсоединяем к насосу, но только к тому отверстию, откуда под напором поступает вода. Второй патрубок соединяем с входом в отопительную систему, выход же необходимо подсоединить к входу насоса.

Насос будет создавать давление, которое, воздействуя на воду, заставит ее проходить через форсунку нашей конструкции. В специальной камере вода будет перегреваться ввиду активного перемешивания, после чего подается непосредственно в отопительный контур. Дабы можно было регулировать температуру, вихревой теплогенератор своими руками должен оснащаться специальным запирающим устройством, располагающимся рядом с патрубком. Если несколько прикрыть запор, то конструкция будет дольше перегонять воду по камере, следовательно, из-за этого температура поднимется. Таким образом и работает такого рода обогреватель.

Про другие способы альтернативного отопления

Повышаем производительность

Насос теряет тепловую энергию, что является главным недостатком вихревого генератора (по крайней мере, в описанном своем варианте). Поэтому насос лучше окунуть в специальную водяную рубашку, дабы исходящее от него тепло также приносило пользу.

Диаметр этой рубашки должен быть несколько больше, чем у насоса. Можем использовать для этого по традиции обрезок трубы, а можно из листовой стали сделать параллелепипед. Его габариты должны быть такими, чтобы все элементы генератора свободно в него помещались, а толщина – чтобы выдерживал рабочее давление системы.

Помимо того, снизить теплопотери можно установкой специального жестяного кожуха вокруг устройства. Изолятором может стать любой такого рода материал, который способен выдерживать рабочую температуру.

  1. Собираем следующую конструкцию: теплогенератор, насос и соединяющий патрубок.
  2. Измеряем, каковы их габариты, и подбираем трубу нужного диаметра – так, чтобы все детали легко в ней поместились.
  3. Изготавливаем крышки для обеих сторон.
  4. Далее заботимся о том, чтобы детали внутри трубы были жестко закреплены, а также о том, чтоб насос сумел прокачивать сквозь себя теплоноситель.
  5. Просверливаем выходное отверстие, крепим на него патрубок.

Обратите внимание! Необходимо поместить насос максимально близко к данному отверстию!

На втором конце трубы мы привариваем фланец, посредством которого будет закреплена крышка на прокладке-уплотнителе. Можно оборудовать внутри корпуса каркас, чтобы было проще устанавливать все элементы. Собираем устройство, проверяем, насколько прочны крепления, проверяем герметичность, вставляем в корпус и закрываем.

Затем подключаем вихревой теплогенератор ко всем потребителям, проверяем его еще раз на предмет герметичности. Если ничего не течет, то можно активировать насос. При открытии/закрытии крана на входе регулируем температуру.

Возможно вас так же заинтересует статья о том как сделать солнечный коллектор

Утепляем ВТП

Прежде всего, одеваем кожух. Берем для этого лист алюминия или нержавейки и вырезаем пару прямоугольников. Загибать их лучше по такой трубе, у которой больший диаметра, чтобы в итоге образовался цилиндр. Далее следуем инструкции.

  1. Скрепляем половинки между собой с помощью специального замка, используемого для соединения водопроводных труб.
  2. Делаем пару крышек для кожуха, но не забываем о том,/ что в них должны оставаться дырки для подключения.
  3. Обматываем устройство термоизоляционным материалом.
  4. Помещаем генератор в кожух и плотно закрываем обе крышки.

Есть и другой способ увеличения производительности, но для этого нужно знать, как же именно работает чудо-прибор Попова, КПД которого может превышать (не доказано и не объяснено) 100%. Мы то с вами уже знаем, как он работает, поэтому может приступать непосредственно к усовершенствованию генератора.

Гаситель вихрей

Да, мы сделаем приспособление с таким загадочным названием – гаситель вихрей. Он будет состоять из расположенных вдоль пластин, помещенный внутри обоих колец.

Посмотрим, что нам потребуется для работы.

  • Сварка.
  • Турбинка.
  • Лист стали.
  • Труба с толстыми стенками.

Труба должна быть меньшей, чем теплогенератор. Делаем из нее два кольца, примерно по 5 см каждое. Из листа вырезаем несколько полосок одного размера. Их длина должна составлять 1/4 длины корпуса устройства, а ширина такой, чтоб после сборки осталось свободное пространство внутри.

  1. Вставляем в тиски пластинку, навешиваем на одном ее конце металлические кольца и свариваем их с пластиной.
  2. Вынимаем пластину из зажима и поворачиваем другой стороной. Берем вторую пластину и помещаем ее в кольца таким образом, чтобы обе пластины размещались параллельно. Аналогичным образом закрепляем все оставшиеся пластины.
  3. Собираем вихревой генератор своими руками, а полученную конструкцию устанавливаем напротив сопла.

Отметим, что поле совершенствования устройства практически безгранично. К примеру, вместо указанных выше пластин мы можем применить проволоку из стали, скрутив ее предварительно в виде клубка. Кроме того, мы можем проделать дырки на пластинах различного размера. Конечно, обо всем этом нигде не упоминается, но кто сказал, что вы не можете использовать данные усовершенствования?

В заключение

И в качестве заключения – несколько дельных советов. Во-первых, все поверхности желательно защитить окрашиванием. Во-вторых, все внутренние детали стоит делать из толстых материалов, так как он (детали) будут постоянно находиться в достаточно агрессивной среде. И в-третьих, позаботьтесь о нескольких запасных крышках, имеющих разного размера отверстия. В дальнейшем вам будет подбирать необходимый диаметр, дабы добиться максимальной производительности устройства.

Отопление дома, гаража, офиса, торговых площадей – вопрос, решать который надо сразу после того, как помещение построено. И не важно, какое время года на улице. Зима всё равно придёт. Так что побеспокоиться о том, чтобы внутри было тепло необходимо заранее. Тем, кто покупает квартиру в многоэтажном доме, волноваться не о чем – строители уже всё сделали. А вот тем, кто строит свой дом, оборудует гараж или отдельно стоящее небольшое здание, придётся выбирать, какую систему отопления устанавливать. И одним из решений будет вихревой теплогенератор.

Сепарация воздуха, иначе говоря, разделение его на холодную и горячую фракции в вихревой струе – явление, которое и легло в основу вихревого теплогенератора, было открыто около ста лет назад. И как это часто бывает, лет 50 никто не мог придумать, как его использовать. Так называемую вихревую трубу модернизировали самыми разными способами и пытались пристроить практически во все виды человеческой деятельности. Однако везде она уступала и по цене и по КПД уже имеющимся приборам. Пока русский учёный Меркулов не придумал запустить внутрь воду, не установил, что на выходе температура повышается в несколько раз и не назвал этот процесс кавитацией. Цена прибора уменьшилась не намного, а вот коэффициент полезного действия стал практически стопроцентным.

Принцип действия


Так что же такое эта загадочная и доступная кавитация? А ведь всё довольно просто. Во время прохождения через вихрь, в воде образуется множество пузырьков, которые в свою очередь лопаются, высвобождая некое количество энергии. Эта энергия и нагревает воду. Количество пузырьков подсчёту не поддаётся, а вот температуру воды вихревой кавитационный теплогенератор может повысить до 200 градусов. Не воспользоваться этим было бы глупо.

Два основных вида

Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.

Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.

  • Шумит такая установка очень сильно.
  • Изношенность деталей повышенная.
  • Требует частой замены уплотнителей и сальников.
  • Слишком дорогое обслуживание.

Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.

  • Прибор может работать при низком давлении.
  • Разница температур на холодном и горячих концах довольно велика.
  • Абсолютно безопасен, в каком бы месте не использовался.
  • Быстрый нагрев.
  • КПД 90 % и выше.
  • Возможность использования, как для обогрева, так и для охлаждения.

Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.

Как собрать теплогенератор


При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.

И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:

  • Сварочный аппарат.
  • Шлифмашинка.
  • Электродрель.
  • Набор гаечных ключей.
  • Набор свёрл.
  • Металлический уголок.
  • Болты и гайки.
  • Толстая металлическая труба.
  • Два патрубка с резьбой.
  • Соединительные муфты.
  • Электродвигатель.
  • Центробежный насос.
  • Жиклёр.

Вот теперь можно приступать непосредственно к работе.

Устанавливаем двигатель

Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.

Подсоединяем насос

Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:

  • В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
  • На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
  • Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
  • По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
  • Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
  • Вход системы отопления подсоединяется ко второму патрубку.
  • К входу насоса присоединяется выход из системы отопления.

Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.

Чуть прикрыв его, вы сможете повысить температуру и наоборот, открыв – понизить.

Усовершенствуем теплогенератор

Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.

Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.

Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.

Вихрегаситель

Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:

  • Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
  • Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
  • Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.

Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов - это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» - это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор - диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор . Дисковый активатор - это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду . Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую . Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

Иллюстрация Описание сферы применения

Отопление . Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.


Нагрев проточной воды для бытового использования . Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.

Смешивание несмешиваемых жидкостей . В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке - 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке - 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии

Экономичность . Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.

Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности . Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.


Небольшая масса установки . За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении - в котельной, подвале и т.п


Простая конструкция . Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.


Нет необходимости в дополнительных доработках . Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.

Нет необходимости в водоподготовке . Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.


Работа оборудования не требует постоянного контроля . Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста - достаточно включить двигатель в сеть и, при необходимости, выключить.


Экологичность . Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент - это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

Иллюстрации Общее описание конструкций кавитационных теплогенераторов

Общий вид агрегата . На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме - это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами . На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.


Теплогенератор с встречными резонаторами . На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

Иллюстрации Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе . На этой схеме можно видеть следующие детали:

1 - корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 - вал, на котором закреплен роторный диск;

3 - роторное кольцо;

4 - статор;

5 - технологические отверстия проделанная в статоре;

6 - излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.


Схема совмещения роторного кольца (3) и статора (4) . На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу


Поворотное смещение роторного кольца и статора . На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.