Способы задания случайных величин. Закон распределения дискретной случайной величины. Примеры решения задач Числовые характеристики дискретных случайных величин

Формула Бернулли (частная теорема о повторении опытов)

Пример 23

Имеется три лотерейных билета. Вероятность выигрыша для любого билета одинакова и равна р. Вероятность того, что билет не выиграет q = 1 – p – как вероятность противоположного события. Определить вероятность того, что из трех билетов выиграют ровно два.

Искомую вероятность обозначим .

Интересующее нас событие произойдет, если выиграет первый И второй билет И не выиграет третий ИЛИ не выиграет первый билет И выиграют второй И третий ИЛИ не выиграет второй билет И выиграют первый И третий. Вероятность каждого из этих вариантов может быть найдена по формуле умножения, а ответ подсчитан по формуле сложения для несовместных событий:

= ppq + qpp + pqp = 3p 2 q .

Анализируя решение задачи, выясняем, что она была решена в следующем порядке:

Составлены различные варианты осуществления интересующего события;

Подсчитано количество этих вариантов;

Определена вероятность появления события, путём осуществления любого варианта;

Найдена искомая вероятность путём умножения вероятности появления события по одному из вариантов на общее количество вариантов.

Фактически, задача была решена по, так называемой, формуле Бернулли . Запишем ее в общем виде.

Пусть производится серия из n опытов (испытаний). Опыты проводятся неоднократно, независимо один от другого и в одинаковых условиях, так что вероятность появления события А от опыта к опыту не меняется и равняется р . Обозначим вероятность не появления события А в одном опыте- q = 1-p . Требуется определить вероятность того, что в серии из n опытов событие А повторится k раз – обозначим это событие как В.

Событие В может осуществиться различными способами (вариантами). Например, таким:

или таким:

Важно то, что в любом варианте количество появлений события А равно n , а количество появления события равно n – k , хотя появляться и не появляться они будут в разных вариантах в различной последовательности.

Для определения числа подобных вариантов можно воспользоваться формулой комбинаторики - числом сочетаний из n элементов по k .

Сочетания – это такие комбинации из k объектов (элементов), выбранных из некоторого множества в n объектов, которые содержат одинаковое число объектов, но отличаются друг от друга хотя бы одним из них.

Число сочетаний из n элементов по k обозначается, как и может быть найдено по формуле: = . (15)

Важным свойством определения числа сочетаний является следующее:

В рассматриваемой задаче элементами, отличающимися друг от друга, являются номера опытов. Общее число вариантов равно .

Вероятность появления события А n раз для каждого варианта одинакова и может быть найдена по формуле умножения вероятностей исходя из фразы «Событие А произошло k раз и не произошло n – k раз»: p k q n - k


Суммируя эти одинаковые вероятности раз получаем формулу, называемую формулой Бернулли :

=p k q n - k . (16)

Необходимо помнить, что р – это вероятность появления интересующего нас события в опыте, а q – вероятность непоявления этого события в опыте.

Формулу Бернулли.(Якоб Бернулли исследовал её в своей книге «Искусство предположений») также называют частной теоремой о повторении опытов . Это значит, что каждый последующий опыт проводится при тех же условиях, что и все предыдущие, т.е. вероятность появления события от опыта к опыту не меняется и остаётся равной р.

Наряду с частной существует общая теорема о повторении опытов (вероятность появления события от опыта к опыту меняется), рассмотрение которой выходит за рамки настоящего курса.

Пример 24

В цехе имеется 10 электродвигателей, вероятность отключенного состояния каждого из которых равна 0,1.Двишгатели включаются в сеть независимо один от другого. Определить вероятность того, что отключены сразу три электродвигателя.

Решение . Условие задачи соответствует схеме повторных испытаний Я. Бернулли. Решаем задачу с использованием частной теоремой о повторении опытов, учитывая, что отключенных двигателей три (вероятность отключенного состояния 0,1), а включенных – 7 (вероятность включенного состояния 0,9):

=p 3 q 10-3 =q 3 (1-q) 10-3 =120∙(0,1) 3 ∙(0,9) 7 =0,0574.

Случайные величины и их законы распределения

Наряду со случайными событиями другим важнейшим понятием теории вероятностей является понятие «случайная величина» (СВ).

Величина – это количественная характеристика результата опыта.

Все величины делятся на две большие группы: неслучайные и случайные.

Неслучайные (детерминированные) – это такие величины, которые в результате опыта принимают заранее определенное, известное значение. Например, время восхода и захода солнца, дата наступления нового года, количество пальцев на руках у новорожденного, число экзаменов и зачётов в семестре.

Случайные(стохастические) – это такие величины, о которых заранее неизвестно, какое значение они примут в результате опыта.

Случайные величины, в свою очередь, могут быть дискретными и непрерывными.

Дискретными называют такие СВ, которые в опыте принимают какое-то одно из множества возможных значений, причем эти значения при желании можно перечислить или пронумеровать, т.е. это множество является конечным. Чаще всего (хотя не обязательно) - это целые, неотрицательные значения. Например,о ценка студента на экзамене; количество волос на голове, число работающих в цехе ЭД.

Непрерывными называют такие СВ, которые в опыте принимают какое-то одно из возможных значений, причем количество этих значений даже в очень малом интервале бесконечно велико. Иначе говоря, множество возможных значений непрерывной СВ является несчётным. Например, уровень напряжения в сети, длительность работы ЛЭП до отказа, рост и вес человека, масса авторучки.

Названия случайных величин принято обозначать заглавными буквами латинского алфавита – X, Y ; а значения , которые случайные величины принимают в опыте, – строчными - x, y .

Различные значения одной и той же случайной величины наблюдаются не одинаково часто. Например, мужчины носят 42-й размер обуви гораздо чаще, чем 46-й; напряжение в сети гораздо чаще лежит в интервале 215- 225 В, чем в интервале 225 –235 В.

Взаимосвязь между значениями случайной величины и вероятностями их появления устанавливает закон распределения случайной величины. Говорят, что СВ распределена (подчиняется) по тому или иному закону распределения. Существует несколько форм задания закона распределения:

· в виде таблицы (таблично);

· виде рисунка (графически);

· формулой (аналитически).

Способы задания законов распределения случайных величин

Все способы задания законов распределения СВ условно можно разделить на теоретические и статистические. Теоретические законы распределения отражают истинные законы, существующие в природе. Для их установления, согласно закону больших чисел, необходимо переработать близкий к бесконечному объём информации. Практически такие законы устанавливаются на основании ограниченного объёма статистических данных и оформляются теми или иными статистическими способами. Статистические данные часто называют экспериментальными (эмпирическими ). Каждый теоретический способ задания закона распределения (ТЗР) имеет статистические аналогии (СтЗР). Рассмотрим эти способы.

ТЗР-1. Ряд распределения СВ

Ряд распределения – это таблица, в которой с одной стороны указаны значения случайной величины, а с другой – их вероятности (табл. 2). В ряду распределения значения СВ располагаются упорядочено – по мере их возрастания.

Между всеми возможными значениями СВ делится суммарная вероятность этих значений, равная единице. Поэтому сумма всех вероятностей ряда распределения равна единице:= 1

Таблица 2. Ряд распределения СВ

Способы задания дискретной случайной величины не являются общими – они неприменимы, например, для непрерывных случайных величин. Действительно, пусть возможные значения случайной величины X полностью заполняют интервал (a;b). Можно ли составить перечень всех возможных значений X? Нет. Необходим общий способ задания любых типов случайных величин. С этой целью и вводят функции распределения вероятностей случайной величины.


Функцией распределения Функцией распределения называют ф-цию F(x), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее x, т.е. F(x) = P(X


Х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенно" title="Свойства функции распределения 1. 1. Значения функции распределения принадлежат отрезку : 0 F(x) 1. 2. 2. F(x) – неубывающая ф-ция, т. е. F(x 2) F(x 1), если х 2 > х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенно" class="link_thumb"> 4 Свойства функции распределения Значения функции распределения принадлежат отрезку : 0 F(x) F(x) – неубывающая ф-ция, т. е. F(x 2) F(x 1), если х 2 > х Вероятность того, что случайная величина примет значение, заключенное в интервале (a;b), равна приращению ф-ции распределения на этом интервале: P (a х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенно"> х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенное в интервале (a;b), равна приращению ф-ции распределения на этом интервале: P (a"> х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенно" title="Свойства функции распределения 1. 1. Значения функции распределения принадлежат отрезку : 0 F(x) 1. 2. 2. F(x) – неубывающая ф-ция, т. е. F(x 2) F(x 1), если х 2 > х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенно"> title="Свойства функции распределения 1. 1. Значения функции распределения принадлежат отрезку : 0 F(x) 1. 2. 2. F(x) – неубывающая ф-ция, т. е. F(x 2) F(x 1), если х 2 > х 1. 3. 3. Вероятность того, что случайная величина примет значение, заключенно">


Пример 1. Случайная величина Х задана функцией распределения 0 при х -1 F(x) = х/4+1/4 при Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0







4. 4. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна 0. Таким образом, имеет смысл рассматривать вероятность попадания случайной величины в интервал, пусть даже сколь угодно малый. Напр., интересуются вероятностью того, что размеры деталей не выходят за дозволенные границы, но не ставят вопроса о вероятности их совпадения с проектным размером.


Но неправильно думать, что равенство 0 вероятности Р(X=х 1) означает, что событие X=х 1 невозможно (если не ограничиваться классическим определением вероятности). В результате испытания случайная величина обязательно примет одно из возможных значений; в частности, это значение может оказаться равным х 1.


5. 5. Если возможные значения случайной величины принадлежат интервалу (a;b), то 1) F(х) = 0 при х а; 2) F(х) = 1 при х b. ] Если возможные значения непрерывной случайной величины расположены на всей оси х, то справедливы следующие предельные соотношения: Lim F(х) = 0; Lim F(х) = 1. х- х+






Плотность распределения вероятностей непрерывной случайной величины Способ задания непрерывной случайной величины с помощью ф-ции распределения не является единственным. Непрерывную случайную величину можно также задать, используя другую ф-цию, которую называют плотностью распределения или плотностью вероятности (иногда ее называют дифференциальной функцией).


Плотностью распределения вероятностей непрерывной случайной величины Х называют ф-цию f(х) – первую производную от ф-ции распределения F(х): f(х) = F"(х). Отсюда функция распределения является первообразной для плотности распределения.


π/2. Найти плотность распределения f(х). 0 при х π/2." title="Пример. Дана ф-ция распределения непрерывной случайной величины Х 0 при х 0 F(x) = sinx при 0 π/2. Найти плотность распределения f(х). 0 при х π/2." class="link_thumb"> 18 Пример. Дана ф-ция распределения непрерывной случайной величины Х 0 при х 0 F(x) = sinx при 0 π/2. Найти плотность распределения f(х). 0 при х π/2. π/2. Найти плотность распределения f(х). 0 при х π/2."> π/2. Найти плотность распределения f(х). 0 при х π/2."> π/2. Найти плотность распределения f(х). 0 при х π/2." title="Пример. Дана ф-ция распределения непрерывной случайной величины Х 0 при х 0 F(x) = sinx при 0 π/2. Найти плотность распределения f(х). 0 при х π/2."> (x) = cosx при 0 π/2." title="Пример. Дана ф-ция распределения непрерывной случайной величины Х 0 при х 0 F(x) = sinx при 0 π/2. Найти плотность распределения f(х). 0 при х π/2.">






Свойства плотности распределения Плотность распределения – неотрицательная функция: f(x) 0. График плотности распределения называют кривой распределения Несобственный интеграл от плотности распределения в пределах от - до равен 1. f(x)dx = 1. -


Вероятностный смысл плотности распределения Функция f(x) определяет плотность распределения вероятности для каждой точки х. Для достаточно малых x. F(x + x) - F(x) f(x)x. Т.к. разность F(x + x) - F(x) определяет (см. выше) вероятность того, что Х примет значение, принадлежащее интервалу (х; x + x), то эта вероятность, след-но, приближенно равна произведению плотности вероятности в т. х на длину интервала х.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

«Теория вероятности в школе» - Сложные события. Несколько испытаний. Произвольное подмножество пространства элементарных событий. Вероятность. Реализация определенного комплекса условий. Независимые события. Теорема умножения вероятностей. Правило произведения. Наивероятнейшее число появлений события. Теорема сложения вероятностей несовместных событий.

«Вероятность случайного события» - Элементарные события. Дважды бросают симметричную монету. Бросание одной игральной кости. Элементарные события случайного эксперимента. Сумма вероятностей. Благоприятствующие элементарные события. Стрелок. Футбольный матч. Таблица элементарных событий. При бросании правильной монеты. Равновозможные элементарные события.

«Сложение и умножение вероятностей» - Теоремы умножения и сложения вероятностей. Вероятность появления хотя бы одного события. Частный случай. Независимые события. Теорема умножения. Формула полной вероятности. Теорема сложения вероятностей. Вероятности попадания в цель. Теорема умножения вероятностей. Каждое событие. Условная вероятность.

«Теория вероятности к экзамену» - Вероятность того, что сумма выпавших очков равна 6. Бросание. Благоприятное событие А. Правило произведения (правило умножения). В мешке находятся 2 чёрных и 3 белых шара. Различие между перестановками, размещениями, сочетаниями. Вероятность события. Учебно-методичиские пособия. Число, записанное посередине.

«Вероятность появления события» - Натуральное число. Определение вероятности события. Эксперимент. Возможность оценки вероятности. Комбинации. Вероятность. Место. Вероятность противоположного события. Вероятность события. Число случаев. Элементы комбинаторики. Число элементов. Элементы теории вероятности. Статистическое определение вероятности событий.

«Случайная величина» - Формула Бернулли. Узкий прямоугольник. Для построения функции распределения вычислим несколько ее значений. Функция распределения есть неубывающая функция. Законом распределения СВ называется любое соотношение. Задача. Случайная величина (СВ). Разные интервалы значений СВ. Функция характеризует как бы плотность, с которой распределяется СВ.

Всего в теме 23 презентации

В ситуации риска нам известны исходы той или иной альтернативы и вероятности, с которыми данные исходы могут наступить. То есть нам известно вероятностное распределение исходов, поэтому они могут быть представлены (смоделированы) в виде случайной величины . В этом параграфе мы напомним сведения из теории вероятностей о случайных величинах и способах их определения, которые будут необходимы для дальнейшего изучения материала книги.

Согласно классическому определению, случайной называется величина, значение которой может меняться от опыта к опыту случайным образом. То есть в каждом "испытании" она может принимать одно единственное значение из некоторого множества. При этом нельзя предсказать, какое именно значение она примет.

Случайные величины делятся на дискретные и непрерывные. Дискретная СВ может принимать только конечное или счетное множество значений. Непрерывная СВ может принимать любое значение из некоторого замкнутого или открытого интервала, в том числе и бесконечного.

3.2.2. Закон распределения случайной величины

Случайная величина определяется своим законом распределения. Закон распределения считается заданным, если указаны:

  • множество возможных значений случайной величины (в т.ч. бесконечное) и
  • вероятность попадания случайной величины в произвольную область этого множества, либо закон (формула), позволяющая рассчитать такую вероятность.

По сути, вероятность представляет собой показатель, характеризующий возможность появления случайной величины в данной области.

Наиболее общим и распространенным способом определения вероятностей различных значений случайной величины является задание функции распределения вероятностей , которую сокращенно называют функцией распределения .

Функцией распределения случайной величины Х называется функция F(x) , задающая вероятность того, что СВ примет значение меньше конкретного значения х , то есть:

F(x) = P(X < x)

Х ("икс большое") - обозначает случайную величину,

х ("икс маленькое") - конкретное значение из множества возможных значений случайной величины.

Функция распределения неубывающая. При х , стремящемся к минус бесконечности, она стремится к нулю, а при х , стремящемся к плюс бесконечности - к единице.

Форма представления закона распределения случайной величины может быть различна и зависит от того, какая это СВ - дискретная или непрерывная.

Из определения функции распределения следуют следующие зависимости:

вероятность того, что случайная величина примет значения в интервале от а до b :

Р(a ≤ Х < b) = F(b) - F(a)

вероятность того, что случайная величина примет значения не меньше, чем а :

3.2.3. Способы представления распределения дискретной случайной величины

Дискретная случайная величина может быть полностью задана своей функцией распределения или рядом (таблицей) распределения. Они могут быть представлены в табличной, аналитической или графической формах.

Допустим, случайная величина Х может принять три возможных значения 25 , 45 и 50 с вероятностями 25% , 35% и 40% соответственно. Ряд распределения этой СВ будет выглядеть следующим образом:

Функция распределения этой же случайной величины, которая показывает вероятность непревышения конкретного значения, может быть записана так:

На рис.3.1 представлены графические способы задания закона распределения этой дискретной случайной величины Х .

Рис.3.1.

На графике ряда распределения вероятности p j реализации каждого возможного значения х j представлены столбиками, высота которых равна вероятности. Сумма высот всех М столбиков (т.е. всех вероятностей) равна единице, поскольку они охватывают все возможные значения х :

Иногда вместо столбиков изображают ломанную, соединяющую вероятности реализации значений СВ.

Вероятность того, что дискретная случайная величина примет значение меньше, чем а , равна сумме вероятностей всех исходов, меньших а :

По определению, это равно значению функции распределения в точке х = а . Если мы нанесем на координатную плоскость значения функции распределения, когда х "пробегает" все значения от минус бесконечности до плюс бесконечности, мы получим график функции распределения. Для дискретной СВ он ступенчатый. На интервале от минус бесконечности до первого возможного значения х 1 она равна нулю, поскольку принять какое-либо значение на этом интервале невозможно.

Далее каждое возможное значение х j увеличивает функцию распределения на величину, равную вероятности наступления этого значения p j . Между двумя последовательными значениями х j и x j+1 функция распределения не изменяется, поскольку других возможных значений х там нет, и скачков не происходит. В конечном итоге, в точке последнего возможного значения х М происходит скачок на величину вероятности р М , и функция распределения достигает предельного значения, равного единице. Далее график идет на этом уровне параллельно оси х . Выше он никогда не поднимается, так как вероятность не может быть больше единицы.

3.2.4. Способы представления распределения непрерывной случайной величины

Непрерывная случайная величина также задается своей функцией распределения, представленной, как правило, в аналитическом виде. Кроме того, она может быть полностью описана функцией плотности вероятности f(x) , которая представляет собой первую производную от функции распределения F(x) :

Функция плотности вероятности неотрицательна, а ее интеграл в бесконечных пределах равен единице.

Возьмем в качестве примера непрерывную случайную величину, распределенную по нормальному закону.

Ее функция плотности вероятности задается аналитически формулой вида:

Здесь m X и σ X параметры распределения. m X характеризует местоположение центра распределения, а σ X - рассеивание относительно этого "центра".